Spheres, Great Circles and Parallels *
نویسنده
چکیده
Each domain has its graphical archetypes. In particular, spheres are unavoidable components of domains such as geography or astronomy. However, when perusing a number of publications, we noticed that spheres were often incorrectly drawn with respect to their features such as great circles and parallels. This article examines several simple METAPOST techniques that remedy these problems.
منابع مشابه
The Blaschke Conjecture and Great Circle Fibrations of Spheres
We construct an explicit diffeomorphism taking any fibration of a sphere by great circles into the Hopf fibration. We use elementary differential geometry, and no surgery or K-theory, to carry out the construction—indeed the diffeomorphism is a local (differential) invariant, algebraic in derivatives. This result is new only for 5 dimensional spheres, but our new method of proof is elementary.
متن کاملThe Topological Blaschke Conjecture I: Great Circle Fibrations of Spheres
We construct an explicit diffeomorphism taking any fibration of a sphere by great circles into the Hopf fibration. We use pure geometry, and no topology, to carry out the construction—indeed the diffeomorphism is a local (differential) invariant, algebraic in derivatives.
متن کاملGrowing Apollonian Packings
In two dimensions, start with three mutually tangent circles, with disjoint interiors (a circle with negative radius has the point at infinity in its interior). We can draw two new circles that touch these three, and then six more in the gaps that are formed, and so on. This procedure generates an (infinite) Apollonian packing of circles. We show that the sum of the bends (curvatures) of the ci...
متن کاملSkinning of circles and spheres
Skinning of an ordered set of discrete circles is discussed in this paper. By skinning we mean the geometric construction of two G1 continuous curves touching each of the circles at a point, separately. After precisely defining the admissible configuration of initial circles and the desired geometric properties of the skin, we construct the future touching points and tangents of the skin by app...
متن کاملSphere inversion fractals
79 UN CO RR EC Multiple methods exist to calculate and represent 3-D fractals. For example, spectacular, artistic images can be obtained using quaternion algebra [1]. In this article, I will briefly discuss three relatively simple methods to calculate fractal shapes consisting only of spheres. All these methods use iterative sphere inversions. A sphere inversion is the 3-D equivalent of a circl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009